

2D Debus & Diebold Meßsysteme GmbH, Alte Karlsruher Str. 8, D-76227 Karlsruhe Tel.: +49(0)721 94485-0 Fax.: +49(0)721 94485-29 Mail: mail@2d-datarecording.com

BC-3Axx\_zGyyy-000

# Box CAN, 3 axis accelerometer, 1(3) GYRO



# Key Features:

- > 3 axis acceleration sensor with extreme accurate axis alignment
- > Direct high speed AD conversion on module
- Calibration, temperature compensation and physical unit calculation done by microcontroller
- Calculation of complex output channels based on recalculation with channels on CAN bus
- Additional output channels with preselected filters
- With integrated gyro possibility for direct Bankangle signal
- Also available as 6 axis unit with additional 3 gyros
- Output of physical values onto the CAN-bus Based on newest MEMS technology 2D integrated a 3 axis acceleration sensor module + 1(3) axis Gyro with a high power CAN controller to start a new generation



### BC-3Axx\_zGyyy-000

# Box CAN, 3 axis accelerometer, 1(3) GYRO

| Specification 3 axis acceleration                      |                    | Mechanical characteristics             |                   |  |  |
|--------------------------------------------------------|--------------------|----------------------------------------|-------------------|--|--|
| Range with 3 axis                                      | ± 4, ± 12, ± 16 G  | Dimensions                             | 44 x 34 x 15 mm   |  |  |
| Bandwidth                                              | X,Y 400Hz; Z 300Hz | Weight (incl. cable)                   | 60 g              |  |  |
| Error for linearity                                    | <1 %               | Housing material                       | Aluminium         |  |  |
|                                                        |                    | Cable                                  |                   |  |  |
| Specification yaw-rate sensor                          |                    | type                                   | Raychem EPD       |  |  |
| Sensitivity                                            | ± 300 °/ s         | wire cross section                     | 4 x AWG26         |  |  |
| Error for linearity                                    | <1% FS             | length                                 | 400 mm            |  |  |
| Bandwidth                                              | 140 Hz             |                                        |                   |  |  |
|                                                        |                    | Environmental data                     |                   |  |  |
|                                                        |                    | Operating temperature                  | -10 to 75 ℃       |  |  |
| CAN Output                                             |                    | Temperature compensation               | 25 to 75 ℃        |  |  |
| CAN ID                                                 | Selectable         | Humidity                               | 5 to 95 %         |  |  |
|                                                        |                    | Sealing class                          | IP 67             |  |  |
| Default: 3 axis acceleration                           | 0x498              | ů                                      |                   |  |  |
| 1(3) axis gyro                                         | 0x499              | Vibration resistance                   |                   |  |  |
| Transmission rate                                      | 25-800 Hz          | Shock                                  | 20 G              |  |  |
|                                                        |                    | during a time period of                | 10 ms             |  |  |
| default                                                | 100 Hz             | Vibration tested at                    | 12 G              |  |  |
| see 2 <sup>nd</sup> page for CAN identifier allocation |                    | with a frequency of                    | 1000 Hz           |  |  |
| Operating status indicator                             |                    | Calibration                            |                   |  |  |
| Red LED blinking                                       |                    | Use formulas on next page to           |                   |  |  |
|                                                        |                    | calculate physical values              |                   |  |  |
| Electrical characteristics                             |                    |                                        |                   |  |  |
| Power supply                                           | 8 – 18 VDC         | Ordering Information                   |                   |  |  |
| Consumption @ 12V                                      | 40 mA              | Use this article number for your order |                   |  |  |
| Sampling rate (per channel)                            | 12.8 kHz           | at 2D:                                 |                   |  |  |
|                                                        | 6.4 kHz            | 3 axis ACC 4G, 1 axis Gyro             | BC-3A04_1G300-000 |  |  |
|                                                        |                    | 3 axis ACC 12G, 1 axis Gyro            | BC-3A12_1G300-000 |  |  |
|                                                        |                    | 3 axis ACC 16G, 1 axis Gyro            | BC-3A16_1G300-000 |  |  |
|                                                        |                    | 3 axis ACC 4G, 3 axis Gyro             | BC-3A04_3G300-000 |  |  |
|                                                        | Tabellenwert       | 3 axis ACC 12G, 3 axis Gyro            | BC-3A12_3G300-000 |  |  |
|                                                        |                    | 3 axis ACC 16G, 3 axis Gyro            | BC-3A16_3G300-000 |  |  |

#### Formula to calculate IIR-filter (optional)

#### Calculation of Filter frequency:

### Filter = In(sampling rate/desired filter frequency)/In2

For example: sampling rate 200Hz; filter frequency 25Hz => ln(200/25)/ln2= filter 3

Double click on IIR-channel, go to "Parameter", then "Display" and choose filter 3 from dropdown menu.

#### Please note: sampling rate for IIR channel can never exceed sampling rate of source channel

The specifications on this document are subject to change at 2D decision. 2D assumes no responsibility for any claims or damages arising out of the use of this document, or from the use of modules based on this document, including but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights. 21.12.2011



### BC-3Axx\_zGyyy-000

### Box CAN, 3 axis accelerometer, 1(3) GYRO





#### **CAN** identifier allocation

| CAN ID (default) |        |        |        |           |        |         |            |        |  |  |
|------------------|--------|--------|--------|-----------|--------|---------|------------|--------|--|--|
| CAN-ID           | Byte 0 | Byte 1 | Byte 2 | Byte 3    | Byte 4 | Byte 5  | Byte 6     | Byte 7 |  |  |
|                  |        |        |        |           |        |         |            |        |  |  |
| 0x498            | AC     | C_X    | AC     | C_Y       | ACC_Z  |         | GYRO_X     |        |  |  |
| 0x499            | T_(    | CPU    | COUN   | IT_LIFE   | GYI    | RO_Y    | GYRO_Z     |        |  |  |
| 0x000*           | ACC_   | _X_IIR | ACC    | _Y_IIR    | ACC    | _Z_IIR  | GYRO_X_IIR |        |  |  |
| 0x000*           | T_CP   | PU_IIR | COUNT  | _LIFE_IIR | GYRO   | D_Y_IIR | GYRO_Z_IIR |        |  |  |

#### \*optional

#### Formulas to calculate physical values

| Channel       |     | Multiplicator |   |        |   | Offset  |                | Channel |   | Multiplicator |   |        |   | Offset |
|---------------|-----|---------------|---|--------|---|---------|----------------|---------|---|---------------|---|--------|---|--------|
| ACC_X         | =   | 0,005         | * | digits | - | 163,835 |                | GYRO_X  | = | 0,02          | * | digits | - | 655,34 |
| ACC_Y         | =   | 0,005         | * | digits | - | 163,835 |                | GYRO_Y  | = | 0,02          | * | digits | - | 655,34 |
| ACC Z         | =   | 0,005         | * | digits | - | 163,835 |                | GYRO_Z  | = | 0,02          | * | digits | - | 655,34 |
| T_CPU         | =   | 0,1           | * | digits | - | 0       |                |         |   |               |   |        |   |        |
| Connector Lay | out |               |   |        |   |         | Connector type |         |   |               |   |        |   |        |

| Pin | Name  | Description      | Color |  |  |  |
|-----|-------|------------------|-------|--|--|--|
| 1   | CAN H | CAN Bus High     | White |  |  |  |
| 2   | CAN L | CAN Bus Low      | Green |  |  |  |
| 3   | GND   | Ground           | Black |  |  |  |
| 4   | n.c.  | Not Connected    | -     |  |  |  |
| 5   | Vext  | Power IN (8-18V) | red   |  |  |  |



On request some options are possible for the CAN-line connector of all 2D CAN modules. Please take a look at the product group [Connectors] in the 2D Product catalog.

The specifications on this document are subject to change at 2D decision. 2D assumes no responsibility for any claims or damages arising out of the use of this document, or from the use of modules based on this document, including but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights. 21.12.2011



2D Debus & Diebold Meßsysteme GmbH, Alte Karlsruher Str. 8, D-76227 Karlsruhe Tel.: +49(0)721 94485-0 Fax.: +49(0)721 94485-29 Mail: mail@2d-datarecording.com

### BC-3Axx\_zGyyy-000

# Box CAN, 3 axis accelerometer, 1(3) GYRO

#### **Supplement Sheet**

The Figure shown beneath shows the "correct directions" for the accelerometers in three directions (x, y and z) as well as the three (optional) included gyros. The directions are essential if you calibrate this sensor using Winlt.



The specifications on this document are subject to change at 2D decision. 2D assumes no responsibility for any claims or damages arising out of the use of this document, or from the use of modules based on this document, including but not limited to claims or damages based on infringement of patents, copyrights or other intellectual property rights. 21.12.2011