

Key Features:

>3 axis acceleration sensor with extreme accurate axis alignment
$>$ Direct high speed AD conversion on module
> Calibration, temperature compensation and physical unit calculation done by microcontroller
> Calculation of complex output channels based on recalculation with channels on CAN bus
> Additional output channels with preselected filters
> With integrated gyro possibility for direct Bankangle signal
$>$ Also available as 6 axis unit with additional 3 gyros
> Output of physical values onto the CAN-bus Based on newest MEMS technology 2D integrated a 3 axis acceleration sensor module + 1(3) axis Gyro with a high power CAN controller to start a new generation

BC-3Axx_zGyyy-000

Technical Specifications			
Specification 3 axis acceleration		Mechanical characteristics	
Range with 3 axis	$\pm 4, \pm 12, \pm 16 \mathrm{G}$	Dimensions	$44 \times 34 \times 15 \mathrm{~mm}$
Bandwidth	$\mathrm{X}, \mathrm{Y} 400 \mathrm{~Hz} ; \mathrm{Z} 300 \mathrm{~Hz}$	Weight (incl. cable)	60 g
Error for linearity	<1\%	Housing material	Aluminium
		Cable	
Specification yaw-rate sensor		type	Raychem EPD
Sensitivity	$\pm 300 \%$ s	wire cross section	$4 \times$ AWG26
Error for linearity	<1\% FS	length	400 mm
Bandwidth	140 Hz		
		Environmental data	
		Operating temperature	-10 to $75{ }^{\circ} \mathrm{C}$
CAN Output		Temperature compensation	25 to $75{ }^{\text {c }}$
CAN ID	Selectable	Humidity	5 to 95%
		Sealing class	IP 67
Default: 3 axis acceleration 1(3) axis gyro	0x498		
	0x499	Vibration resistance	
Transmission rate	$25-800 \mathrm{~Hz}$	Shock	20 G
		during a time period of	10 ms
default see $2^{\text {nd }}$ page for CAN identifier allocation	100 Hz	Vibration tested at	12 G
		with a frequency of	1000 Hz
Operating status indicator		Calibration Use formulas on next page to calculate physical values	
Red LED blinking			
Electrical characteristics Power supply Consumption @ 12V Sampling rate (per channel)			
		Ordering Information	
	$40 \mathrm{~mA}$	Use this article number for your order	
	$6.4 \mathrm{kHz}$	at 2D:	
		3 axis ACC 4G, 1 axis Gyro	BC-3A04_1G300-000
			BC-3A12_1G300-000
		3 axis ACC 16G, 1 axis Gyro	BC-3A16_1G300-000
		3 axis ACC 4G, 3 axis Gyro	BC-3A04_3G300-000
	Tabellenwert	3 axis ACC 12G, 3 axis Gyro	BC-3A12_3G300-000
		3 axis ACC 16G, 3 axis Gyro	BC-3A16_3G300-000

Formula to calculate IIR-filter (optional)

Calculation of Filter frequency

Filter = $\ln ($ sampling rate/desired filter frequency)/In2

For example: sampling rate 200 Hz ; filter frequency $25 \mathrm{~Hz}=>\ln (200 / 25) / \ln 2=$ filter 3
Double click on IIR-channel, go to "Parameter", then "Display" and choose filter 3 from dropdown menu.
Please note: sampling rate for IIR channel can never exceed sampling rate of source channel

BC-3Axx_zGyyy-000

Dimensions

CAN identifier allocation

CAN ID (default)						
CAN-ID	Byte 0	Byte 1	Byte 2	Byte 3	Byte 4	Byte 5
Byte 6	Byte 7					
0×498	ACC_X	ACC_Y		ACC_Z	GYRO_X	
0×499	T_CPU	COUNT_LIFE	GYRO_Y	GYRO_Z		
$0 \times 000^{*}$	ACC_X_IIR	ACC_Y_IIR		ACC_Z_IIR	GYRO_X_IIR	
$0 \times 000^{*}$	T_CPU_IIR	COUNT_LIFE_IIR		GYRO_Y_IIR	GYRO_Z_IIR	

*optional

Formulas to calculate physical values

Channel		Multiplicator		Offset	Channel		Multiplicator			Offset
ACC_X	$=$	0,005	* digits	- 163,835	GYRO_X	$=$	0,02	* digits		655,34
ACC_Y	$=$	0,005	* digits	- 163,835	GYRO_Y	=	0,02	* digits		655,34
ACC_Z	=	0,005	* digits	- 163,835	GYRO_Z	=	0,02	* digits		655,34
T_CPU	$=$	0,1	* digits	- 0						

Connector Layout Connector type

Pin	Name	Description	Color
1	CAN H	CAN Bus High	White
2	CAN L	CAN Bus Low	Green
3	GND	Ground	Black
4	n.c.	Not Connected	-
5	Vext	Power IN (8-18V)	red

Binder 719, 5 PF Binder 719, 5 PM (front side)

(front side)

On request some options are possible for the CAN-line connector of all 2D CAN modules. Please take a look at the product group [Connectors] in the 2D Product catalog.

BC-3Axx_zGyyy-000

Box CAN, 3 axis accelerometer, 1(3) GYRO

Supplement Sheet

The Figure shown beneath shows the "correct directions" for the accelerometers in three directions (x, y and z) as well as the three (optional) included gyros. The directions are essential if you calibrate this sensor using Winlt.

"right-hand rule" for orientation of axis $\mathbf{a}_{\mathrm{x}, \mathrm{y}, \mathrm{z}}$

"right-hand rule" for gyro sense of rotations

